Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure.
نویسندگان
چکیده
Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.
منابع مشابه
Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in...
متن کاملAxon injury induced endoplasmic reticulum stress and neurodegeneration
Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury often leads to axon degeneration, retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. Although these sequential events are clearly connected, ample evidence indicates that neuronal soma and axo...
متن کاملThe effects of ER morphology on synaptic structure and function in Drosophila melanogaster.
Hereditary spastic paraplegia (HSP) is a set of genetic diseases caused by mutations in one of 72 genes that results in age-dependent corticospinal axon degeneration accompanied by spasticity and paralysis. Two genes implicated in HSPs encode proteins that regulate endoplasmic reticulum (ER) morphology. Atlastin 1 (ATL1, also known as SPG3A) encodes an ER membrane fusion GTPase and reticulon 2 ...
متن کاملTargeting tropomyosin-receptor kinase fused gene in cancer.
Tropomyosin-receptor kinase fused gene (TRK-fused gene, TFG) encodes a protein which is a conserved regulator of protein secretion that localizes in the endoplasmic reticulum exit sites and controls the export of materials from the endoplasmic reticulum. It is important for intracellular trafficking of protein secretion. TFG belongs to the systems which control cell size, and is involved in reg...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 13 شماره
صفحات -
تاریخ انتشار 2013